Active-site solvent replenishment observed during human carbonic anhydrase II catalysis
نویسندگان
چکیده
Human carbonic anhydrase II (hCA II) is a zinc metalloenzyme that catalyzes the reversible hydration/dehydration of CO2/HCO3-. Although hCA II has been extensively studied to investigate the proton-transfer process that occurs in the active site, its underlying mechanism is still not fully understood. Here, ultrahigh-resolution crystallographic structures of hCA II cryocooled under CO2 pressures of 7.0 and 2.5 atm are presented. The structures reveal new intermediate solvent states of hCA II that provide crystallographic snapshots during the restoration of the proton-transfer water network in the active site. Specifically, a new intermediate water (WI') is observed next to the previously observed intermediate water WI, and they are both stabilized by the five water molecules at the entrance to the active site (the entrance conduit). Based on these structures, a water network-restructuring mechanism is proposed, which takes place at the active site after the nucleophilic attack of OH- on CO2. This mechanism explains how the zinc-bound water (WZn) and W1 are replenished, which are directly responsible for the reconnection of the His64-mediated proton-transfer water network. This study provides the first 'physical' glimpse of how a water reservoir flows into the hCA II active site during its catalytic activity.
منابع مشابه
Role of hydrophilic residues in proton transfer during catalysis by human carbonic anhydrase II.
Catalysis by the zinc metalloenzyme human carbonic anhydrase II (HCA II) is limited in maximal velocity by proton transfer between His64 and the zinc-bound solvent molecule. Asn62 extends into the active site cavity of HCA II adjacent to His64 and has been shown to be one of several hydrophilic residues participating in a hydrogen-bonded solvent network within the active site. We compared sever...
متن کاملStructural and kinetic characterization of active-site histidine as a proton shuttle in catalysis by human carbonic anhydrase II.
In the catalysis of the hydration of carbon dioxide and dehydration of bicarbonate by human carbonic anhydrase II (HCA II), a histidine residue (His64) shuttles protons between the zinc-bound solvent molecule and the bulk solution. To evaluate the effect of the position of the shuttle histidine and pH on proton shuttling, we have examined the catalysis and crystal structures of wild-type HCA II...
متن کاملAtomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: insights into the proton transfer mechanism.
Human carbonic anhydrase II (HCA II) is a zinc-metalloenzyme that catalyzes the reversible interconversion of CO2 and HCO3-. The rate-limiting step of this catalysis is the transfer of a proton between the Zn-bound solvent molecule and residue His64. In order to fully characterize the active site structural features implicated in the proton transfer mechanism, the refined X-ray crystal structur...
متن کاملProduction and X-ray crystallographic analysis of fully deuterated human carbonic anhydrase II.
Human carbonic anhydrase II (HCA II) is a zinc metalloenzyme that catalyzes the reversible hydration and dehydration of carbon dioxide and bicarbonate, respectively. The rate-limiting step in catalysis is the intramolecular transfer of a proton between the zinc-bound solvent (H2O/OH-) and the proton-shuttling residue His64. This distance (approximately 7.5 A) is spanned by a well defined active...
متن کاملInvestigation of solvent effect on the active site energy of Carbonic Anhydrase and Ribonucleotide Reductase
Enzymes catalyze many biological reactions. The rates of chemical reaction in the presence ofenzymes are, in some cases, accelerated more than 10 orders of magnitude relative to thecorresponding rates in solution.In this paper a comparison between optimized structures of two enzyme molecules in aspect ofenergy and dipole moment in different conditions including presence of metallic ion, without...
متن کامل